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Abstract – The objective of this paper is to select and 

justify specific data mining methods for pre-processing, 

clustering, and classification on a data set about the 

climate in Basel, Switzerland.  

1. Introduction 

Data mining (DM) is the process of extracting patterns 

and discovering structure in large and complex data 

sets [1]. A plethora of techniques exist [2] that allow 

the extrapolation of advantageous intelligence for 

many application domains. In this paper, we focus on 

reviewing and analysing specific methods applicable 

to weather data clustering and classification.  

The weather data set used for this study consists of 

1763 records of 18-dimensional vectors. Data pre-

processing is a mandatory step of DM that aims to 

convert prior unusable data into reformatted data that 

fits a DM process [3]. This stage is unsupervised, 

meaning no human involvement is needed. The 

various steps of pre-processing and justifications for 

them are addressed in section 2 of the paper.  

Once the data set has been correctly prepared, section 

3 covers clustering of the data; a main and 

unsupervised task of exploratory DM that involves 

partitioning and grouping data to identify patterns 

embedded within. A taxonomy of clustering 

algorithms exist that can be broadly divided into 6 

types: partition, hierarchical, evolutionary, density-

based, model-based, and graph-based [4].  

In this paper, we choose to analyse a partitioning 

algorithm; K-Means, and a graph-partitioning 

algorithm; Spectral clustering. K-Means is deployed 

widely and commonly used for weather data analysis 

[5], Spectral clustering has the ability to adapt to 

different types of data and looks at the affinity of data 

points rather than their actual placement [6], a more 

detailed evaluation of these techniques is provided in 

section 3.1  

Classification is one of the final steps in the DM 

process and a form of supervised ML that uses given 

labels to predict the class of a set of data points [7]. 

Classifiers can be either discriminative or generative, 

as M, Jordan et al., discuss, there exist several reasons 

to use discriminative classifiers; that model the 

posterior p(y|x) directly or learn a direct mapping of x 

to y, rather than generative classifiers [8]. In this paper, 

we analyse two discriminative classifier models: K-

Nearest Neighbour (KNN) and Support Vector 

Machine (SVM). See section 4 for an overview of 

theses classification models. 

2. Pre-processing 

Data pre-processing involves various subtasks; this 

paper will focus on feature selection, data cleaning, 

data imputation, data normalisation, data reduction, 

and feature extraction [3]. The reasoning for why said 

subtasks were selected will be made clear in the 

subsequent sub-chapters. 

2.1. Feature Selection 

A critical issue in analysing complex data is the 

process of identifying the most influential subset of the 

original features to use. Removing any irrelevant or 

redundant features will enhance generalisation by 

reducing overfitting and improve the performance and 

interpretability of the processes the data represents. 

For the weather data set used in this study, all the 

minimum and maximum features are discarded as they 

already correlate with and measure the same 

underlying feature as the mean features. For instance, 

‘Temperature (Min)” and “Temperature (Max)” are 

removed, leaving “Temperature (Mean)”; reducing the 

number of input variables to those believed to be most 

useful. 



2.2. Data Cleaning 

Data cleaning consists of operations necessary to 

correct anomalous data. In the context of weather 

datasets, a large storm would result in extreme rainfall, 

strong winds, and lower temperatures; an outlier. 

Outliers can significantly impact the mean and 

standard deviation of results. In this study, outliers are 

removed first; as opposed to eliminating after 

standardisation, since the proceeding data reduction 

method being used is principal component analysis 

(PCA). Scaled data is needed, as PCA seeks to 

maximise the variance of components; thus, the 

integrity of the data should be maintained. 

We begin by inspecting each feature of the dataset, 

where the modality is visually and statistically 

examined. Figure 1 shows how histogram, time-series 

and quantile-to-quantile (Q-Q) plots where utilised for 

visual examination of the data. The time-series graphs 

showed there was no missing data in any of the 

features. Frequency distribution was illustrated by the 

histograms and Q-Q plots aided in assessment of 

whether data distribution was Gaussian. 

For statistical examination, typically, the D’ Agostino-

Pearson test would be most appropriate, as it provides 

sensitivity for all conditions when using large data 

samples [9]. However, after conducting both the 

Shapiro-Wilk test and D’ Agostino-Pearson test, the 

Shapiro-Wilk test was more powerful and better suited 

to identify abnormal distributions in this particular 

dataset. 

Once the nature of the data was fully understood, the 

appropriate method for anomaly removal could be 

determined. Due to the variety of data distribution of 

the feature data, a Chebyshev outlier detection method 

was used; as this calculation holds no assumptions 

about the distribution of the data. Chebyshev’s 

inequality gives a bound of what percentage of data is 

outside of k standard deviations from the mean [10]. 

For Gaussian distribution, 3σ was used for the 

threshold and 6σ where distribution was abnormal. A 

total of 103 anomalies were removed from the data set. 

2.3. Data Normalisation 

Now that the data is clean, it can be standardised to 

give more emphasis to variables with higher variance. 

It is necessary to standardise variables so that data can 

be compared and to eliminate the result of 

dissimilarity in magnitude or scale of data. In the 

dataset used for this study, each feature has a different 

physical meaning and uses independent units, i.e., hPa, 

Km/h, mm, cm etc. The data was standardised by 

subtracting the mean and dividing the results by the 

standard deviation. 

2.4. Data Reduction 

Dimensionality reduction can be divided into linear 

and non-linear methods, with PCA being the main 

linear technique [11]. Other algorithms like T-

Distributed Stochastic Neighbour Embedding (T-

SNE); a non-linear data visualiser, and Linear 

Discriminant Analysis (LDA) exist [12], however, 

PCA is the mother method for multivariate data 

analysis and a flexible, well-understood tool [11]. The 

algorithm produces linear combinations of the original 

features to generate axes, named principal components 

(PCs).  

Having too many features in a dataset causes noise and 

difficulties, reducing the dimensions will provide a 

more clear perspective and better visualisation. 

Moreover, reducing the size of the data and 

eliminating redundancy is necessary before process-

intensive supervised algorithms are used for clustering 

and classification. After implementing PCA on the 

dataset, correlated features will be removed, albeit, at 

the cost of readability and interpretability [13].  

To understand how variance is distributed amongst 

PC’s, it is useful to plot the data as in figure 2. To 

determine the number of PCs to use, a simple cut-off 

line is used to separate all PC’s that have the variance 

of more than a single variable’s worth of data. Thus, if 

each variable provided the same variance, the cut-off 

would be 1/p, where p is the number of variables [14]. 

The first three PC’s account for 66% of the variance, 

Figure 1. Plots used for visual inspection of each data 

feature.  



with a significant reduction in percent variance from 

the first to second PC. The first three PC’s are above 

the cut-off line, and so, will be selected.  

2.5. Feature Extraction 

Next, to understand which variables contribute most 

strongly to each PC, a loading table is examined. The 

table is composed of positive and negative loadings 

that can be analysed to give a good sense of what each 

principal component represents. Table 1, shown 

below, is the head of the results of the table loadings 

for the weather data set. From this, we can extract new 

orthogonal features; for instance, PC2 shows strong 

positive loadings with temperature and strong negative 

loadings with sea pressure. 

Features PC1 PC2 PC3 

Temperature °C - 0.377   0.458   0.197 

Humidity % rh   0.380 - 0.376   0.332 

Sea Pressure hPa - 0.077 - 0.594 - 0.316 

Precipitation mm 0.251   0.227   0.620 

Snowfall cm   0.210 - 0.038 - 0.011 

 

 

To further highlight and to provide a more clear 

physical meaning of the variables’ relationship with 

the PC’s a distance biplot is used. The biplot in figure 

3 shows how samples are similar to one another and 

how the variables control the similarity; it is a standard 

way of showing the sample score and variable 

loadings in a single plot. After careful analysis of the 

loadings, the following top correlative variables with 

PC’s have been selected and roughly labelled: PC1 as 

‘cold, rainy, windy’, PC2 as ‘hot, dry, breezy’, and 

PC3 as ‘warm, wet, no wind’. Though labelled, further 

properties can still be extracted from these PCs. 

3. Clustering 

To identify natural patterns embedded within the data, 

clustering algorithms aim to minimise the distances 

between data points of the same clusters and maximise 

the distance between centres [15]. The following 

sections: method functionality, cluster analysis, and 

cluster interpretation aim to explain the functionality 

of and validate selected algorithms, then, extrapolate 

meaning to interpret the clusters formed.  

3.1. Method Functionality 

This paper focuses on two main clustering algorithms: 

k-means and spectral clustering. We will now discuss 

the functionality, limitations, and benefits of said 

algorithms: 

While K-Means is an NP-hard problem [16], heuristic 

methods are capable of finding good estimations to the 

global optimum in polynomial time. It is also capable 

of handling datasets efficiently, no matter the shape or 

size of potential clusters. The K-Means clustering 

algorithm is a popular unsupervised machine learning 

(ML) algorithm, with the objective of partitioning high 

dimensional data based on the distance between data 

points. Centroids are generated and used to define 

clusters; a data point being part of a cluster if it is 

closer to that cluster’s centroid than any other. It finds 

the best centroids by assigning points to clusters and 

then re-estimating the k cluster centres repetitively 

until reasonable clusters are obtained [17]. 

The main problems with K-Means are that it can be 

skewed by outliers, it struggles to cluster data of 

varying size and density, and it requires multiple 

restarts at times to find the local minima. Spectral 

clustering helps to solve a few of these problems while 

Table 1. Table of loadings showing correlation coefficients 

between variables and PCs. 

Figure 3. Bar graph to illustrate variance distribution 

among PCs. 

Figure 2. A distance biplot with labels to extrapolate 

meaning and interpretation of the PCs 



avoiding the curse of dimensionality. For instance, 

formed spectral clusters do not assume any shape or 

distribution, in contrast to K-Means.  

The Spectral clustering algorithm is an unsupervised 

ML graph partitioning algorithm, which relies on a 

Laplacian matrix and the proximity between data 

points to form clusters. It works by assembling a 

nearest neighbour graph or radius-based graph, and 

then it makes use of spectral embedding; forming an 

affinity matrix and applying spectral decompositions 

to the corresponding graph Laplacian, to embed the 

data points in low dimensional space. The relevant 

eigenvectors chosen for the clusters are the ones that 

correspond to the smallest several eigenvalues of the 

Laplacian [6].  

A big issue with Spectral clustering is that very noisy 

datasets can cause huge problems, in this case, the 

relevant eigenvectors may not be in the top few, and 

computational performance could drop significantly 

[6]. Both K-Means and Spectral clustering suffer from 

having to choose the optimum number of clusters, 

though there are heuristics that help, as discussed in 

the proceeding subchapter.  

3.2. Cluster analysis 

There are numerous cluster analysis metrics that can 

provide insight into the quality of clustering results 

and the natural tendency of the data to amalgamate. 

These do not measure the validity of clusters, only the 

comparative performance against each other. For 

analysis of the K-Means and Spectral clustering 

algorithms, the Davies-Bouldin index (DB Index) and 

Silhouette Coefficient metrics have been selected.  

The DB Index evaluates inter-cluster differences and 

intra-cluster similarities. As the DB index shrinks, the 

clustering is viewed more positively. The Silhouette 

Coefficient lets us know how well assigned each data 

point is to see if they belong to appropriate clusters. 

The notion of “good clustering” is unclear [18], it is 

relative to the problem, thus in this case, the chosen 

quality indexes are deemed a relevant evaluation of 

clusters for this data set, based on their evaluative 

criterion. Table 2 shows the scores of both metrics on 

the K-Means and Spectral clustering.  

Metric K-Means Spectral 

DB Index 0.986 1.195 

Silhouette 0.393 0.339 

 

Determining the optimal k number of clusters is 

subjective and depends on the method used for 

measuring similarity as well as the parameters used for 

partitioning. To determine the optimal k for K-Means 

a well-known “elbow plot” [17] can be used to look at 

the total within-cluster sum of the square; a 

measurement of the compactness of the clustering. 

The location of a “knee” or bend in the plot is an 

indicator of the appropriate number of clusters.  

To determine the optimal k for Spectral Clustering, 

Ulrike von Luxburg proposed an approach based on 

perturbation theory and spectral graph theory known 

as the eigengap heuristic [6]. The heuristic suggests 

the optimal k is the value that maximises the eigengap; 

the difference between consecutive eigenvalues. The 

red box highlights the optimal k for both Spectral and 

K-Means in figure 4. 

3.3. Cluster Interpretation 

 

 

 

 

 

 

As shown by figure 5, the K-Means clusters are more 

clear and divisible, whereas the spectral clusters have 

formed one large cluster with three much smaller 

clusters. The weather dataset is very noisy, and as 
Table 2. Table of DB index & Silhouette score for both the 

k-means and spectral clustering algorithms.   

Figure 4. Silhouette plots alongside elbow and eigengap 

heuristic plots to analyse clusters and determine optimal k. 

Figure 5. Scatter plot results of both K-Means and Spectral 

clustering. 



discussed in section 3.1, this has skewed the resulting 

clusters. Fortunately, the K-Means algorithm has 

effectively grouped the clusters into interpretable, 

well-defined chunks. To determine what these clusters 

represent, parallel coordinate plots; like the one shown 

in figure 6, can be used to analyse how the values for 

the variables compare across the clusters. 

 

 

 

 

 

 

 

 

After careful inspection of the variables that compose 

the PC’s and examination of how the PC’s relate to the 

clusters, labels with meaningful names have been 

obtained for use in the classification task. They are as 

follows: C0 is ‘Hot, drizzly, no wind’, C1 is ‘Mild, 

rainy, breezy’, C2 is ‘Cold, dry. Blustery’, and C3 is 

‘Cold, rainy, blustery’.  

4. Classification 

KNN is a prototype-based classifier and a type of 

instance-based learning, or lazy learning, as all 

computation is only done once a query has been made 

[19]. Data points are classified by a plurality vote of 

its neighbours, and the data point is then assigned to 

the most common label amongst its k nearest 

neighbours.  

While KNN is simple to implement, requires no 

training; a time complexity of linear O(n) [20] makes 

it computationally quicker than SVM, and has few 

hyperparameters to tune; k value and distance 

function, it is unfortunately sensitive to noisy data and 

outliers. Furthermore, it doesn’t work well with large 

datasets or high dimensions, and its hyperparameter k 

needs to be chosen wisely [21]. 

SVM is a non-probabilistic binary linear classifier and 

an eager learner. When given a set of training samples, 

the algorithm maps them to categories, while ensuring 

a clear gap between them. New sample points can then 

be assigned to divisible spaces, and then predicted to 

belong to one of these spaces depending on the side of 

the gap on which the point lies [22].  

In contrast to KNN, SVM works relatively well in high 

dimensional spaces and is more effective when the 

number of dimensions is greater than the number of 

samples. SVM has a time complexity of non-linear 

O(n2) [23] but takes care of outliers better than KNN 

and functions greatly when there is a clear margin of 

separation between classes. SVM isn’t suitable for 

large data sets, and like KNN is susceptible to datasets 

with more noise. Based on this brief review, KNN is 

expected to function better on the weather dataset. 

4.2. Hyperparameter Tuning 

In KNN, finding the hyperparameter k is difficult. A 

value too low will mean that noise will have a more 

significant effect, a value too high will make it 

computationally expensive. Research has shown that 

no optimal number of neighbours apply to all types of 

datasets [20], so, to find the optimal value for k on the 

weather dataset, the mean error rate that corresponds 

with each k value is plotted, where k ranges from 1 to 

40 as shown in figure 7. From the output, we can see 

the mean error is below 0.010 when the value of k is 

between 20 and 21. 

4.2. Evaluating Performance 

To determine whether a measured approximate level 

of accuracy on test data will be retained when the 

classification model is used on future unseen data, we 

must perform cross-validation. One drawback of this 

is that computations are repeated for each k value, 

which increases time complexity [24]. So, to acquire a 

less biased model, repeated k-fold cross-validation is 

performed to determine the number of groups that the 

data sample should be split into. For instance, when 

the KNN models neighbour parameter was 20, the 

optimum number of splits was 6. 

Figure 6. Parallel coordinates plot to visualise and 

interpret where data points sit across PCs. 

Figure 7. Plot to compare the error rate with k value. 



Various performance metrics can be used to determine 

the quality of predictions made by each classifier. True 

positives, false positives, true negatives, and false 

negatives are used to calculate the metrics shown in 

table 3 below. The data shows that SVM was slightly 

worse at finding all positive instances, meaning the 

proportion of actual weather data points correctly 

classified was less than KNN. The classification 

accuracy of SVM was also slightly lower, seemingly 

KNN is the better classifier here, although the 

accuracy measurement can be misleading as it does 

not detect true negatives. As discussed in section 4.1, 

KNN is computationally quicker than SVM; however, 

the k value for this model was 20, explaining why 

SVM was faster. 

 KNN SVM 

Precision 0.99 0.99 

Recall 0.99 0.98 

F1-Score 0.99 0.99 

Support 280 280 

Accuracy 0.993 0.986 

Time (ms) 1.058 0.089 

 

 

The results shown in figure 8 and 9, visualise the 

classification of some of the labelled data for KNN and 

SVM on a 2D plane. The illustrations show which 

errors occur and reflect how far data points lie from 

the different classes. The visualisations for other tested 

kernels for SVM are provided in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion  

In this paper, we compare and analyse various 

techniques for data pre-processing, clustering and 

classification. We find that on this weather dataset K-

Means performed better than spectral clustering and 

KNN was only slightly better than SVM for 

classifying the data. The results concur with many 

other findings discussed in the literature.  

If more time was available, a broader survey on 

existing methods for all steps of the DM process could 

have been undertaken, to determine better-suited 

techniques specifically for the weather data. Most 

existing research in this field study using DM 

techniques for prediction and forecasting weather, few 

research papers cover only classification of weather 

data. More specifically, it would have been interesting 

to explore further dimensionality reduction algorithms 

to see how these impact the results of the clustering 

and classification algorithms. 
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Table 3. Performance metric values and computational 

time for KNN and SVM classifiers. 

Figure 8. KNN classification model visualization  

Figure 9. SVM classification mode visualisation using 

“linear” kernel.  
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Appendix A: Pre-processing Results 

 

A.1. Figure 1 - Time-series, Histogram, and quantile-to-quantile plots. 

 

A.2. Figure 2 - Bar graph illustrating variance distribution amongst principal components. 

 

A.3. Figure 3 - Biplot to show PCA results and variable loadings together. 

 

 

 

 

 

 



Appendix B: Clustering Results 

 

B.1. Figure 4 - Perform eigen decomposition on the affinity matrix and identify eigenvalues with the largest 

magnitude. 

 

 

 

 

 

 

 

 

B.2. Figure 5 - Function to plot clusters on 2D and 3D plots to visualise and interpret data more clearly, shown by 

the graphs beneath.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B.3. Figure 4 - , A function to plot silhouette’s alongside elbow and eigengap heuristic plots. 

 

 

B.4. Figure 6 - Parallel plot to interpret cluster by seeing where data points sit across all PCs. 

 

 

 

 



Appendix C: Classification Results 

 

C.1. Figure 7 – Simple plot showing the corresponding error rate for each k value. 

 

C.2. Figure 8 & 9 – Function to visualise any classification model, support vectors can also be plotted for SVM 

when the code is uncommented. 

 



C.3. Additional SVM visualisations for radial basis function and polynomial kernels. 

 

 

 

 

 

 

 

 

 


